Nguyên hàm 1/e^x+1

Đặt$\left\{ {\begin{array}{*{20}{l}}{u = x + 1}\\{{\rm{d}}v = {e^{3x}}{\mkern 1mu} {\rm{d}}x}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{\rm{d}}u = {\rm{d}}x}\\{v = \dfrac{{{e^{3x}}}}{3}}\end{array}} \right.$$ \Rightarrow I = \left( {x + 1} \right)\dfrac{{{e^{3x}}}}{3} - \dfrac{1}{3}\int {{e^{3x}}{\mkern 1mu} {\rm{d}}x} = \dfrac{1}{3}\left( {x + 1} \right){e^{3x}} - \dfrac{{{e^{3x}}}}{9} + C.$


Bạn đang xem: Nguyên hàm 1/e^x+1

*
*
*
*
*
*
*
*

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ \begin{array}{l}u = g\left( x \right)\\dv = h\left( x \right)dx\end{array} \right.\) thì:


Cho \(F\left( x \right) = \int {\left( {x + 1} \right)f"\left( x \right)dx} \). Tính \(I = \int {f\left( x \right)dx} \) theo $F(x)$.


Cho hàm số $y = f(x)$ thỏa mãn $f"\left( x \right) = \left( {x + 1} \right){e^x}$ và $\int {f"(x)} dx = (ax + b){e^x} + c$ với $a, b, c$ là các hằng số. Chọn mệnh đề đúng:


Xem thêm: Trang Chủ: Phần Mềm Hỗ Trợ Dạy Học, Download Camtasia Studio 9

Biết $F\left( x \right) = \left( {ax + b} \right).{e^x}$ là nguyên hàm của hàm số $y = \left( {2x + 3} \right).{e^x}$. Khi đó $b - a$ là


Ta có \( - \dfrac{{x + a}}{{{e^x}}}\) là một họ nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{e^x}}}\), khi đó:


Cho F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{x}{{{{\cos }^2}x}}\) thỏa mãn \(F\left( 0 \right) = 0.\) Tính \(F\left( \pi \right)?\)


Biết rằng \(x{e^x}\) là một nguyên hàm của hàm số \(f\left( { - x} \right)\) trên khoảng \(\left( { - \infty ; + \infty } \right)\). Gọi \(F\left( x \right)\) là một nguyên hàm của \(f"\left( x \right){e^x}\) thỏa mãn \(F\left( 0 \right) = 1\), giá trị của \(F\left( { - 1} \right)\) bằng:


Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \(f\left( 1 \right) = 0\), \(F\left( x \right) = {\left< {f\left( x \right)} \right>^{2020}}\) là một nguyên hàm của \(2020x.{e^x}\). Họ các nguyên hàm của \({f^{2020}}\left( x \right)\) là: